

Short Commentary

A Universal Diagnosis Syntax (UDS) for Clinical Trials and Case Studies

Carl-Fredrik Bassøe**EkviMed AS, Solfjellveien 7, 1389, Heggedal, Norway, Europe*

***Correspondence:** Carl-Fredrik Bassøe, EkviMed AS, Solfjellveien 7, 1389, Heggedal, Norway, Europe
E-mail: bassoe.carl@gmail.com; DOI: 10.1042/JCTCS.7.2.0028

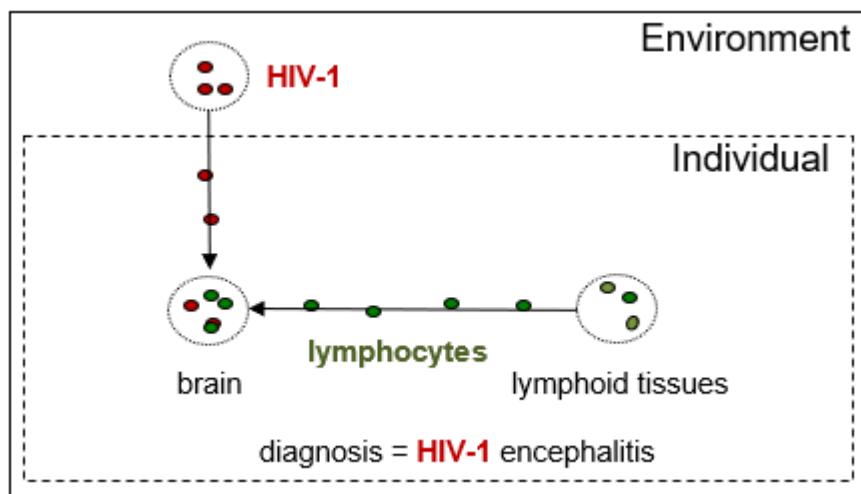
Received date: November 03, 2025; **Accepted date:** November 10, 2025; **Published date:** November 25, 2025

Citation: Carl-Fredrik Bassøe, A Universal Diagnosis Syntax (UDS) for Clinical Trials and Case Studies. *J Clin Trial Case Stud.* 8: 1.

Copyright: © 2025, Carl-Fredrik Bassøe. All intellectual property rights, including copyrights, trademarks rights and database rights with respect to the information, texts, images, logos, photographs and illustrations on the website and with respect to the layout and design of the website are protected by intellectual property rights and belong to Probe Publisher or entitled third parties. The reproduction or making available in any way or form of the contents of the website without prior written consent from Probe Publisher is not allowed.

Description

Diagnoses and parts of diagnoses are fundamental tools in clinical research. I have developed a general diagnosis syntax that may be useful in stratifying clinical problems making them better suited to clinical trials and case studies.


Apt choices of symbols play a major role in science. Here, diagnoses (d) are generated by the formula $d:=e\&o\&p$ where ‘&’ and ‘:=’ mean concatenation and assignment, respectively [1]. The variables e , o , and p are assigned to names of an etiological agent, a disorder, and a pathogenetic mechanism, respectively, as illustrated in figure 1.

The diagnosis ‘dementia’ may illustrate how a stratification may proceed. This diagnosis covers hypofunction in several cortical regions, for example, $d='frontotemporal hypofunction'$ [2]. Symptoms, signs, and abnormal supplementary investigations of dementia may derive from diminished function in various cortical and subcortical structures. If a dementia is caused by an infection, then the pathogenesis is an immune reaction, necrosis and scarring are expected. but degeneration due to neuron and/or glial apoptosis is unlikely. On the other hand, the pathogenesis may be circulatory, e.g., multiple infarctions, which points to other etiologies, for example hereditary hypercholesterolemia and chemicals (smoking, drugs). A more specific partial diagnosis pointing out the cortical localization would be $o='fusiform gyrus atrophy and hypofunction'$ that might explain prosopagnosia [3, 6]. In addition, studies on drug effects may be confounded by effects of drugs on the etiology, pathogenesis rather than the selected disorder.

The diagnosis dementia is incomplete since it says nothing about etiology, disorder, or pathogenesis. Further investigations may decide whether the etiology is heredity (mutation), mechanical trauma, infectious, or due to chemicals (drugs) [3, 4]. The pathology can be made more precise by stating tissue volume changes and structural abnormality, for example ‘atrophy due to degeneration’. If the degeneration is due to hyper apoptosis, then the pathogenesis involves neither inflammation nor an immune reaction. In contrast, necroptosis comes with an immune reaction [5, 6].

Conclusion

Clinical trials of disorders like dementia may be confounded by lack of stratification on etiology, the disorder, and pathogenesis. Stratification based on UDS is a general tool available to all clinical studies.

Figure 1: The diagnosis HIV-1 encephalitis is interpreted into a model. The etiology (e) is the red virus that invades the brain and causes a brain disorder (o). The pathogenesis (p) is an immune reaction type 4 indicated by the invasion of lymphocytes.

References

- 1) Bassøe C-F. A universal diagnosis syntax. *BMC Med Inform Decis Mak.* 2023; 23:143.
- 2) Gauthier S. *Alzheimer's disease*. Boca Raton: Informa. 2007.
- 3) Wang Y, Liu M, Lu Q, Farrell M, Lappin JM, et al. Global prevalence and burden of HIV-associated neurocognitive disorder: A meta-analysis. *Neurol.* 2020; 10;95:e2610-2621.
- 4) Fattakhov N, Torices S, Stangis M, Park M, Toborek M. Synergistic impairment of the neurovascular unit by hiv-1 infection and methamphetamine use: implications for hiv-1-associated neurocognitive disorders. *Viru.* 2021; 21;13:1883.
- 5) Rossion B, Jacques C, Jonas J. Intracerebral electrophysiological recordings to understand the neural basis of human face recognition. *Brain Sci.* 2023; 18;13:354.
- 6) Choi SB, Kwon S, Kim JH, Ahn NH, Lee JH, et al. The molecular mechanisms of neuroinflammation in Alzheimer's disease, the consequence of neural cell death. *Int J Mol Sci.* 2023; 21;24:11757.