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INTRODUCTION 
 

Osteosarcoma (OS) is a malignant bone tumor that primarily affects children, adolescents, and young adults [1]. Its clinical 
manifestations are diverse, with common symptoms including pain, mass, limited mobility, and pathological fractures [2]. In 
recent years, OS, as a malignant tumor, has garnered widespread attention globally. Despite certain progress made in clinical 
treatment, the incidence and mortality rates of OS remain high, severely affecting the quality of life and lifespan of patients [3]. 

The primary treatment modalities for OS mainly include surgical resection, radiotherapy, and chemotherapy, among other 
traditional therapeutic methods [4]. However, these approaches have certain limitations. Surgical resection can be effective 
for early-stage OS, but, for advanced cases, the surgical difficulty is high, postoperative recovery is slow, and it can easily lead 
to functional impairment [5]. The control effect of radiotherapy on OS is limited, and the side effects of radiotherapy are 
considerable, easily damaging surrounding normal tissues [6]. Chemotherapy also has certain restrictions in the treatment of 
OS, as some patients cannot tolerate it due to drug resistance or adverse reactions [7]. Therefore, it is particularly important 
to search for new therapeutic targets and strategies. 

The characteristics of PANoptosis, also known as non-apoptotic cell death, have become a popular research direction in the 
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field of immunotherapy in recent years. PANoptosis is a form of cell death distinct from the classical apoptotic death pathway, 
exhibiting different morphological manifestations and regulatory mechanisms [8]. PANoptosis characteristics have been 
proven to play a major role in tumor genesis and development [9]. Firstly, the interaction between PANoptosis characteristics 
and tumor cells can be achieved through apoptotic pathways [10]. The emergence of PANoptosis characteristics can restore 
the function of abnormally expressed apoptosis-related proteins, guiding tumor cells to re-enter the apoptotic pathway and 
eliminate them [11]. Secondly, PANoptosis characteristics can increase the expression of tumor antigens, activate immune cells, 
and enhance their ability to kill tumor cells [12,13]. Finally, the expression of PANoptosis characteristics can also regulate the 
invasion and metastasis abilities of tumor cells, inhibiting tumor progression and metastasis [14,15]. However, there is still 
relatively limited research on its role and mechanisms in the immunotherapy of OS. 

In recent years, immunotherapy, as a novel therapeutic approach, has gradually become a research hotspot and attracted much 
attention from researchers [16]. Immunotherapy aims to treat tumors by enhancing the patient’s own immunity and 
regulating their immune system to recognize and attack cancer cells [17,18]. In the immunotherapy of OS, the current main 
methods include immune checkpoint inhibitors, cellular immunotherapy, and vaccine therapy [19,20]. However, despite some 
important progress made in the field of immunotherapy, there are still some issues that need to be addressed. On the one hand, 
OS exhibits a certain degree of heterogeneity, and there are differences among different patients, leading to varying responses 
to immunotherapy [21]. On the other hand, OS cells possess certain immune evasion mechanisms, such as expressing 
inhibitory costimulatory molecules that suppress the activation and killing functions of immune cells, thereby reducing the 
effectiveness of immunotherapy [22,23]. Therefore, a deeper understanding of the mechanisms of PANoptosis can provide 
new opportunities for developing effective immunotherapy strategies for OS. Currently, there is a gap in research on the role 
of PANoptosis in OS. 

In this study, we employed consensus-cluster-plus analysis to identify three subpopulations based on differentially 
expressed genes (OS_PAN_DEGs) related to PANoptosis and OS. Subsequently, we investigated the immune characteristics 
and mutational landscapes of these subpopulations and constructed a PANoptosis risk scoring model (OS_PAN-index). 
Utilizing this PANoptosis signature, we evaluated the potential association between PANoptosis and OS characteristics, as 
well as its predictive value for treatment response and prognosis. 

Our findings may pave the way for innovative targeted therapies in the treatment of OS patients. 

MATERIALS AND METHODS 

Data resources 

Microarray datasets related to OS were downloaded from the national center for biotechnology information Gene Expression 
Omnibus (GEO) database [24]. The screening criteria were as follows: The microarray dataset should be a gene expression 
profile; the dataset should be a gene expression profile related to OS tissue samples; OS samples should be derived from 
primary and metastatic sites; the gene expression profile should be from human OS; and the total number of OS samples 
should be greater than 20. Datasets that did not meet any of the criteria were excluded. Finally, three datasets were selected 
for further analysis: GSE16088, GSE21257 and GSE14359 [25-27]. Among them, GSE16088 and GSE14359 datasets were used 
to screen for differentially expressed genes. Initially, the datasets were merged using the R package in silico merging, and batch 
effects were removed using the remove batch effect function from the R package limma. This resulted in a matrix with batch 
effects removed. The GSE21257 database was used as the training set, including 53 OS patients and their clinical information 
(age, gender, histological subtype and huvos grade, tumor location, metastasis at diagnosis and survival information). The 
validation set, Therapeutically Applicable Research to Generate Effective Treatment-Osteosarcoma (TARGET-OS) dataset 
(n=95), was obtained from the TARGET database. Detailed information on the datasets is provided in Table 1. 
 

Dataset/ 

Cohort 
 

Database 
 

Data type 
 

Sample information 

 

GSE16088 
 

GEO 
 

RNA-seq data 
14 cases of osteosarcoma tissue 
samples + 6 cases of normal tissue 
samples 

 

GSE14359 
 

GEO 
 

RNA-seq data 
10 cases of osteosarcoma tissue 
samples + 2 cases of normal tissue 
samples 

 

GSE21257 
 

GEO 
RNA-seq data + 
clinical information 

53 cases of osteosarcoma tissue 
samples 
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TARGET-OS 
 

TARGET 
RNA-seq data + 
clinical information 

95 cases of osteosarcoma tissue 
samples 

Table 1: Data source 

We collected five pathways downloaded from the Molecular Signatures Database (MSigDB) (version 7.4) (Gene Set 
Enrichment Analysis |MSigDB: gsea-msigdb.org) for analysis, including reactome_ pyroptosis, hallmark_apoptosis, Kyoto 
Encyclopedia of Genes and Genomes (KEGG)_apoptosis, reactome_apoptosis, and map04217 pathway (KEGG_necroptosis) 
[28]. The union of all gene sets from these five pathways was designated as the PANoptosis pathway gene set (Supplementary 
Table 1). 

Identification of OS-related gene modules 

The Weighted Gene Co-Expression Network Analysis (WGCNA) method was utilized to identify gene modules associated with 
OS. WGCNA not only provides information on the correlation between two nodal genes and their related genes, but also offers 
topological properties of co-expression networks [29]. The WGCNA package was employed in R3.4.1 software to screen for 
stable gene modules in the merged dataset of GSE16088 and GSE14359. 

Identification of Differentially Expressed Genes (DEGs) 

Firstly, the raw datasets of GSE16088 and GSE14359 were background-corrected, normalized and log2-transformed using 
the affy package in R. When multiple probes identified the same gene, their average expression values were calculated to 
determine its expression level. After merging these two datasets, the bioconductors “Surrogate Variable Analysis (SVA)” R 
package was applied to eliminate batch effects. Differential gene analysis was performed using the “limma” package in R with 
a cut-off of P<0.05 and |log2FC|>2 to distinguish DEGs between disease and healthy samples in the merged dataset. 
Subsequently, volcano plots and heatmaps were employed to visualize the DEG expression data [30]. 

Unsupervised cluster analysis of OS-PANoptosis-related model genes 

We performed consensus clustering analysis using the “consensus- cluster-plus” package and model genes to identify 
unknown OS subtypes [31]. The clustering process utilized 1-Pearson correlation distance, with a sample resampling rate of 
80%, and was repeated ten times. We employed the empirical cumulative distribution function plot to determine the optimal 
number of clusters. 

Functional enrichment analysis 

To perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis, we 
utilized the R packages “org.Hs.eg.db” and “clusterProfiler” (version 3.14.3). Firstly, we annotated the genes with GO terms 
using “org.Hs.eg.db” and mapped them to the background set. Subsequently, we employed the “clusterProfiler” package to 
conduct GO and KEGG enrichment analysis and obtain the gene set enrichment results. In both cases, the minimum and 
maximum sizes of the gene sets were set to 5 and 5000, respectively. We retrieved the latest KEGG pathway gene annotations 
through the KEGG rest api and mapped them to the background set. The statistical significance of both analyses was 
determined by a P-value<0.05 and False Discovery Rate (FDR)<0.25 [32]. 

For Gene Set Enrichment Analysis (GSEA), we obtained subset collections from the molecular signatures database to assess 
relevant pathways and molecular mechanisms based on gene expression profiles and phenotypic groupings [33]. We 
performed 1000 permutations to obtain statistically significant results with a P-value<0.05 and FDR < 0.25. 

Analysis of somatic mutations 

To assess somatic mutations and Tumor Mutation Burden (TMB), we utilized the R package “maftools” [34,35]. Somatic 
mutation data were obtained from the TARGET database and analyzed to identify nonsynonymous somatic mutations. 
Subsequently, the TMB score was calculated by dividing the number of non-synonymous somatic mutations by the total size 
of the genome in megabases. 

Analysis of the immune landscape 

The Tumor Immune Dysfunction and Exclusion (TIDE) framework is a computational tool that utilizes gene expression 
profiles of cancer samples to assess the potential for tumor immune evasion [36,37]. The TIDE score, calculated for each 
tumor sample, serves as a biomarker to predict the response to immune checkpoint blockade, including Anti-Programmed 
Cell Death -1 (Anti-PD1) and Anti Cytotoxic T-Lymphocyte-Associated Antigen 4 (Anti-CTLA4), across different cancer types. 
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We employed five algorithms to evaluate immune cell infiltration in the tumor microenvironment: Timer, epic, xcell, 
cibersort, and mcpcount [38,39] . These algorithms provide a comprehensive assessment of the immune cell landscape 
within the tumor microenvironment. 

Survival analysis and machine learning 

We employed the “glmnet” package to establish a Lasso regression model and utilized 10-fold cross validation to select the 
optimal lambda value, aiming to enhance the interpretability and predictive accuracy of the model. We determined the 
coefficient for each gene through multivariate Cox analysis and generated the final regression model using the selected lambda 
value. 

Initially, patients were divided into two groups based on risk coefficient values using the percentile (50%) approach, 
categorizing them as either high OS_PAN index or low OS_PAN index groups. Subsequently, we used the “survfit” function 
from the “survival” R package to analyze the prognostic differences between the two groups. The log-rank test method was 
adopted to assess the significance of prognostic differences between samples in different groups. 

Drug screening based on core genes 

To facilitate the development of therapeutic approaches, we explored potential drug molecules significantly associated with 
core genes utilizing the Drug Signature Database (DSigDB) and cell miner database [40,41]. 

Statistical analysis 

Statistical analysis was performed using R software (v.4.1.0). Continuous variables were expressed as mean±Standard 
Deviation (SD), while categorical variables were represented as frequencies (percentages). For continuous variables, 
student’s t-test or Wilcoxon test was used to test differences between two groups based on the  assumption of normality 
of the data. For categorical variables, chisquare test or fisher’s exact test was employed based on the expected frequency counts. 
In all tests, a two-sided P-value less than 0.05 was considered statistically significant. Kaplan-meier method was adopted for 
survival assessment, and the log-rank test was used to compare differences between groups. Multivariate survival analysis was 
performed using the Cox proportional hazards regression model. 

RESULTS 

Dataset evaluation 

The combined gene expression levels of the GEO series after batch effect correction were standardized, and the results before 
and after standardization are shown in Figures 1A-1D. In the GSE14359 and GSE16088 datasets, we identified probes 
corresponding to 13,231 genes and confirmed the DEGs in OS. After filtering, a total of 13,231 molecules were obtained, 
among which 2,835 genes met the threshold of |log2 (FC)| ≥ 1 and p.adj< 0.05 (Figures 1E and 1F). 

Weighted Gene Co-expression Network Analysis (WGCNA) and identification of key modules 

Here, we employed WGCNA to identify modules most relevant to OS. Based on scale-free topology and mean connectivity, we 
selected β=14 (scale-free R2=0.82) as the “soft” threshold (Figure 2A). Figure 2B depicts the clustering dendrogram for OS 
and control groups. Using this power value, we generated 11 Gene Co-Expression Modules (GCMs), presented in Figure 2C 
with distinct colors. The correlation between OS and GCMs is shown in Figures 2D-2F, where the turquoise module (consisting 
of 3136 genes), grey module (consisting of 1461 genes), and darkolivegreen module (consisting of 3628 genes) exhibited the 
highest correlation with OS (turquoise: r=-0.87, p=7e-11; grey: R=0.76, p= 4e- 07; dark olive green: R= 0.62, p=1e-04), and 
thus were considered as key modules for subsequent analysis. 

Identification and functional analysis of PANoptosis related differentially expressed genes in OS 

The PANoptosis gene set encompassed genes related to pyroptosis (27 genes), apoptosis (298 genes) and necroptosis (160 genes) 
(Figure 3A). The DEGs in OS included 2835 DEGs screened from the GEO database and 8225 genes from the modules most relevant 
to OS identified by WGCNA (Figures 1C and 1D, and (Supplementary Figure S1). By mapping the three gene sets screened from GEO, 
WGCNA, and PANoptosis, we obtained 105 genes, which were defined as OS differentially expressed genes (OS_ PAN_DEGs) related 
to PANoptosis (Figure 3B). We performed GO, KEGG and GSEA enrichment analyses on the OS_PAN_DEGs to explore their biological 
functions and related signaling pathways. 

The Biological Process (BP) analysis revealed that the OS_PAN_ DEGs were mainly enriched in processes such as cellular 
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metabolic regulation, hematopoietic stem cell differentiation, interleukin-1- mediated signaling, and RNA transcription 
regulation (FDR< 0.1, p-value< 0.05), (Figure 3C). The Molecular Function (MF) analysis demonstrated that the 
OS_PAN_DEGs were primarily enriched in protein binding, enzyme binding, enzyme regulator activity, and drug binding 
(FDR<0.1, p-value<0.05), (Figure 3D). The Cellular Component (CC) analysis showed that the OS_PAN_DEGs were mainly 
enriched in proteasome complexes, endopeptidase complexes, peptidase complexes, and the cytoplasm (FDR<0.1, p-
value<0.05), (Figure 3E). KEGG enrichment analysis indicated that the OS_PAN_DEGs were primarily enriched in apoptosis, 
necroptosis, proteasome, hippo signaling pathway and multiple pathways related to neurodegenerative diseases (FDR<0.1, 
p-value<0.05), (Figure 3F). 

To further elucidate the biological functions assumed by the OS_ PAN_DEGs, we performed GSEA analysis on the OS_PAN_DEGs 
using the KEGG, hallmark, and reactome datasets. The results suggested that the OS_PAN_DEGs were primarily enriched in 
apoptosis (reactome and KEGG), mammalian Target Of Rapamycin Complex 1 (mTORC1) signaling pathway (hallmark), focal 
adhesion (KEGG), and Vascular Endothelial Growth Factor (VEGF) signaling pathway (reactome) (NES>1, p-value<0.05, 
FDR<0.25), (Figures 2G-2I). Overall, our study identified 105 PANoptosis-related differentially expressed genes (OS_ 
PAN_DEGs) in OS and revealed their enrichment in various biological functions and signaling pathways, such as the mTORC1 
signaling pathway, apoptosis, and VEGF signaling pathway, indicating their potential involvement in tumor growth, 
metastasis and drug resistance (Figures 4A-4E). 

Identification of three OS subtypes with different prognoses based on the expression profile of 
OS_PAN_DEGs 

Previous studies have indicated that PANoptosis may influence tumor mutations and immune infiltration. To assess the 
immune landscape across subgroups of OS_PAN_DEGs, we utilized several immune algorithms, including cibersort, estimate, 
and xcell to analyze the immune profiles of the three clusters. A waterfall plot in Figure 5A depicts the distribution of 22 
immune cell types within the training set of GSE21257. Subsequently, we evaluated the immune-score, stromal-score and 
microenvironment score across the subgroups of OS_PAN_DEGs (Figure 5B and 5C). Our findings revealed significant 
differences in both immune-score and stromal-score between cluster_1 and the other two groups (cluster_1 vs. cluster_2, 
P=0.006; cluster_1 vs. cluster_3, P=0.043 for immune-score; cluster_1 vs. cluster_2, P=0.0066; cluster_1 vs. cluster_3, P=0.016 
for stromal-score). In the assessment of microenvironment score, no statistical difference was observed between cluster_1 
and cluster_3, whereas a significant difference was present between cluster_1 and cluster_2 (P=0.0023), (Figure 5D). 
Furthermore, we evaluated the gene expression of immune checkpoints in the subgroups of OS_PAN_DEGs, including 
(CD276), Cluster of Differentiation 86 (CD86), Tumor Necrosis Factor Ligand Superfamily Member 14 (TNFSF14), Cluster of 
Differentiation 40 (CD40), Cluster of Differentiation 48 (CD48), Hepatitis A Virus Cellular Receptor 2 (HAVCR2), Leukocyte 
Associated Immunoglobulin Like Receptor 1 (LAIR1), Programmed Cell Death 1 Ligand 2 (PDCD1LG2) and Tumor Necrosis 
Factor Ligand Superfamily Member 4 TNFSF4. These immune checkpoints were upregulated in cluster_2 and down regulated 
in cluster_1 and cluster_3 (all P<0.05), (Figure 5E). Subsequently, we presented the somatic mutation signatures across the 
subgroups of OS_ PAN_DEGs. The top 19 genes with the highest mutation frequencies across the three clusters were Tumor 
Protein 53 (TP53), Mucin 16, Cell Surface Associated (MUC16), Alpha Thalassemia/Mental Retardation Syndrome X-Linked 
(ATRX), Retinoblastoma 1 (RB1), Contactin Associated Protein-Like 5 (CNTNAP5), Titin (TTN), CUB and Sushi Multiple 
Domains 3 (CSMD3), Piccolo Presynaptic Cytomatrix Protein (PCLO), Alström Syndrome Protein 1 (ALMS1), Dystrophin 
(DMD), Dynein Axonemal Heavy Chain 3 (DNAH3), HECT Domain E3 Ubiquitin Protein Ligase 4 (HECTD4), Laminin Subunit 
Alpha 2 (LAMA2), Ryanodine Receptor 2 (RYR2), Calcium Voltage-Gated Channel Subunit Alpha1 B (CACNA1B), 
Chromodomain Helicase DNA Binding Protein 1-Like (CHD1L), CUB and Sushi Multiple Domains 2 (CSMD2), CXXC Finger 
Protein 1 (CXXC1), Dynein Axonemal Heavy Chain 9 (DNAH9), and Dynein Axonemal Intermediate Chain 4 (DNAI4). Among 
these, Tumor Protein 53 (TP53) had the highest mutation frequency (21%), while the mutation frequencies of the other nine 
genes ranged from 3%-11% (Figure 5F). The most common mutations involved cytosine, indicating cytosine instability, 
potentially due to the ease of oxidation of its amino group. Tumor Mutation Burden (TMB), an important indicator of the 
number of mutations in cancer, is also a novel biomarker for assessing the response to PD-1 antibody therapy. We compared 
the TMB across the three clusters and found that cluster_2 had a higher TMB than cluster_1 and cluster_3 (cluster_2 vs. 
cluster_1, P=0.00017; cluster_2 vs. cluster_3, P=0.0019), (Figure 5G). In summary, our findings reveal significant differences in 
the expression of immune checkpoints and mutation signatures across the three subgroups, which may have important 
implications for cancer immunotherapy. 

Constructing a risk assessment model 

To further assess the impact of OS_PAN_DEGs on survival prognosis, we utilized Least Absolute Shrinkage and Selection 
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Operator (LASSO), univariate, and multivariate regression to screen out eight gene signatures closely related to prognosis. 
Based on these signatures, we ultimately constructed a PANoptosis risk index model (OS_PAN- index) for OS (Figures 6A-6D). 
The formula for the OS_PAN-index is as follows: HPAN-inde = 0.188BTG3-0.288CYCS+0.246DYNLL1-0.235IL 
6+0.898PSMA2+0.587PSMD13+0.673PSME4+0.321STAT6. Using the OS_PAN-index score, we classified 53 patients with 
complete survival information in the training set into a high OS_PAN-index group and a low OS_PAN-index group (34 in the 
high group vs. 19 in the low group). Kaplan-Meier analysis revealed that the prognosis of the low- risk group (Median Survival 
Time, MST=6.82 years) in the training set was significantly better than that of the high-risk group (MST=5.18 years) (P=0.02), 
(Figure 6E). We investigated the relationship between patient prognosis, gene expression, and the OS_PAN-index, observing a 
significant decrease in survival rates with increasing OS_PAN-index. As expected STAT6, IL6, PSMA2, CYCS emerged as 
protective factors, with their expressions downregulated as the OS_PAN-index GDI, RG9MTD1, PSME4, PSMD13, BTG3 were 
identified as risk factors (Figure 6F). Additionally, we evaluated the Area Under the Curve (AUC) of the OS_PAN-index as a 
predictive model, demonstrating its high accuracy in predicting 3-year, 4-year, and 5-year survival (Figure 6G). 

Sankey diagrams were employed to visualize the relationship between the OS_PAN-index risk groups and individual clinical 
characteristics, revealing that cluster_1 was mainly concentrated in the high OPANindex group, while cluster_2 was primarily 
found in the low OS_PAN-index group (Figure 6H). Based on the results of cox regression analysis, we constructed a 
nomograph, which identified the OS_PAN-index as an independent risk factor (Figure 6I). In summary, the PANoptosis risk 
scoring model (OPAN-index) based on OS_PAN_DEGs, constructed through LASSO regression, univariate and multivariate 
regression analysis, accurately predicts the survival prognosis of OS patients and has the potential to become a potential 
independent risk factor for clinical decision-making. 

Validating the effectiveness of the OS_PAN-index as a predictive factor for the prognosis of OS 
patients 

To test the reproducibility of the OS_PAN-index model as a predictive tool, we validated the model in the TARGET-OS cohort 
(validation set). Using Kaplan-Meier analysis, we observed a significant decrease in patient survival rates with increasing 
OS_PAN-index (Figure 7A). In the validation set, the prognosis of the low OS_PAN- index group was significantly better than 
that of the high OS_PAN- index group (MST=1.79 years vs MST=10.89 years, P<0.001) (Figure 7B). In summary, the OS_PAN-
index model demonstrated significant predictive value for patient survival rates in the validation set, with higher OS_PAN-
index scores correlating with poorer prognoses. 

Immune cell profiles and molecular pathways associated with the OS_PAN-index in OS patients 

To further explore the immune characteristics of different OS_PAN- index groups, we employed five distinct immune algorithms, 
including cibersort, estimate, tide, timer, and xcell, to assess the relationship between the OS_PAN-index and the immune 
microenvironment. The results in Figures 7C and 7D indicate a significant correlation between the OS_PAN-index and the 
expression of Plasma cells, T cells gamma delta, and NK cells resting, with all P-values less than 0.05. Additionally, the stromal 
score, immune score, and estimate score were significantly higher in the high OS_PAN-index group compared to the low OS_ 
PAN-index group (all P<0.05), (Figure 7E). Notably, the Microsatellite Instability (MSI) score, an important indicator reflecting 
tumor genomic stability, is closely associated with the effectiveness of immune checkpoints (56). Our analysis revealed a 
significantly higher MSI score in the high OS_PANindex group compared to the low OS_PAN-index group, with similar results 
observed for other scores such as the Tumor Immune Dysfunction and Exclusion (TIDE) score, Interferon-Gamma (IFNG) 
score, Cluster of Differentiation 86 CD8 score, dysfunction score, exclusion score, Myeloid-Derived Suppressor Cells (MDSC) 
score, and Tumor-Associated Macrophage (TAM) score (all P<0.05), (Figures 8A-8H). This observation suggests that the high 
OS_PAN- index group may be more likely to benefit from immunotherapy compared to the low OS_PAN-index group. 

To further elucidate the molecular mechanisms underlying different OS_PAN-index groups, we conducted Gene Set Variation 
Analysis (GSVA) enrichment analysis. The results indicated significant enrichment in signaling pathways such as spliceosome, 
ubiquitin- mediated proteolysis, mismatch repair, and steroid biosynthesis in the high OS_PAN-index group. In contrast, 
the low OS_PAN- index group exhibited significant enrichment in signaling pathways related to glycosaminoglycan 
degradation, glycerolipid metabolism, alanine, aspartate, and glutamate metabolism, and glycosphingolipid biosynthesis 
(Figure 8I). These findings suggest that patients with higher OS_PAN-index scores may be more sensitive to immune 
checkpoint therapy, while those with lower OS_PAN-index scores may be more suitable for targeted drug therapy. 

Drug screening 

To identify potential drugs for the treatment of OS, we conducted a drug target enrichment analysis using the cellminer and 
DsigDB databases, focusing on eight core genes BTG3, CYCS, DYNLL1, IL6, PSMA2, PSMD13, PSME4, and STAT6 as genetic 



Journal of Infectious Diseases & Therapy    Open access 

 

JIDT| Volume 3|Issue 2|JUL, 2024 
  
   7 
 

targets relevant to risk model construction. The results revealed a significant positive correlation between the expression 
levels of these eight core genes and the drugs pazopanib, chelerythrine, staurosporine, hydroxyurea and sunitinib (Table 2). 
These drugs provide important reference points for the development of OS treatment strategies. 

DISCUSSION 

OS, a highly malignant tumor often occurring in children and adolescents, exhibits remarkable infiltrative and metastatic 
capabilities [42]. Currently, traditional treatment methods for OS have demonstrated limitations, such as the limited killing effect 
of chemotherapy on tumor cells, which can easily lead to the development of drug resistance [43]. Therefore, the search for 
novel therapeutic approaches and targets holds significant importance for the treatment of OS. 

 
Recently, the concept of PANoptosis has garnered widespread attention in the biomedical field. As an inflammatory form of 
programmed cell death mediated by the PANoptosome complex, PANoptosis encompasses all the key features of pyroptosis, 
necroptosis, and apoptosis, making it a important breakthrough in the study of cell death mechanisms [44]. In the 
development of OS, a malignant bone tumor, PANoptosis plays a major role. OS, originating from the mesenchymal cell 
lineage, is highly malignant with a poor prognosis, often leading to lung metastasis within a few months, posing a severe 
threat to patients’ lives and health [45]. The characteristics of PANoptosis make it significan in the immune response and 
tumor progression of OS. Although previous studies have gained some understanding of the molecular mechanisms of 
necroptosis [46,47], pyroptosis, and apoptosis in OS they often focus on only one or two forms of cell death, failing to 
comprehensively assess their roles in OS Our study is the first attempt to evaluate the characteristics of PANoptosis in OS. 

In this study, we examine into the characteristics and roles of PANoptosis in OS for the first time. Through the normalization 
of GEO series combined gene expression data, we screened out a gene set highly related to OS. Subsequently, using WGCNA, 
we identified the most relevant module for OS. By integrating information from GEO, WGCNA, and the PANoptosis gene set, 
we identified 105 OS_ PAN_DEGs related to PANoptosis. These genes not only encompassed the core processes of PANoptosis, 
such as pyroptosis, apoptosis, and necroptosis, but were also closely associated with the occurrence and development of OS. 
The results of GO, KEGG, and GSEA enrichment analyses revealed that OS_PAN_DEGs were involved in various pathways, 
including cell metabolic regulation, hematopoietic stem cell differentiation, interleukin-1-mediated signaling, RNA 
transcriptional regulation, apoptosis, necroptosis, proteasome, hippo signaling, and neurodegenerative diseases. Notably, we 
found that OS_PAN_DEGs were particularly enriched in the Mammalian Target of Rapamycin Complex 1 (mTORC1) signaling 
pathway and VEGF signaling pathway. mTORC1, as a key regulator of cell growth and metabolism, its abnormal activation is 
often closely associated with tumorigenesis and development [48]. Therefore, we speculate that OS_PAN_DEGs may affect the 
proliferation and metabolism of OS cells by regulating the mTORC1 signaling pathway, thereby promoting tumor growth and 
metastasis. In addition, we also observed a significant enrichment of OS_PAN_DEGs in the apoptotic process. Apoptosis is an 
important form of programmed cell death, and its abnormality often leads to the unlimited proliferation and malignant 
transformation of tumor cells [49]. By further studying the specific mechanisms of these genes in apoptosis, we hope to 
provide new targets for the treatment of OS. 

Utilizing consensus clustering analysis, we successfully classified the OS cohort into three subtypes with distinct prognoses 
based on the expression profile information of OS_PAN_DEGs. The expression of PSMD14 and PPT1 genes was upregulated in 
cluster_1, while TIMP1 and GADD45A were down regulated in cluster_2 and cluster_3 relative to cluster_1. These differences in 
gene expression may directly affect the apoptotic process of OS cells, resulting in prognostic variations among the different 
subtypes. cluster_2 exhibited higher immune and stromal scores, as well as a higher TMB. These characteristics may render 
cluster_2 more sensitive to immunotherapy, potentially explaining its relatively better overall survival rate [50]. Additionally, 
differences in the expression of immune checkpoints among the different subtypes suggest the possibility of developing 
personalized immunotherapy strategies tailored to each subtype of OS. Notably, our study also identified several genes with 
high-frequency mutations, such as TP53. Mutations in these genes may influence the biological behaviors of OS cells, including 
proliferation, apoptosis, invasion, and metastasis [51]. Further investigation of these mutated genes can not only reveal the 
pathogenesis of OS but also provide clues for the development of novel targeted therapies. 

Through LASSO regression, univariate, and multivariate regression analysis, we identified eight gene signatures closely related 
to prognosis and subsequently constructed the OS_PAN-index scoring system. This scoring system demonstrated excellent 
predictive performance in the training set, with the prognosis of the high-risk group being significantly worse than that of 
the low-risk group. In the validation set, we further validated the effectiveness of the OS_PAN-index, observing a significant 
decrease in patient survival rates with increasing OS_PAN- index. We delved into the relationship between the OS_PAN-index 
and the immune microenvironment, finding significant correlations between high OS_PAN-index groups and the expression 
of various immune cell types. Moreover, the immune scores, stromal scores, and microenvironment scores were higher in 
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these groups compared to the low OS_PANindex groups. Additionally, we observed a significant increase in MSI scores and 
other scores related to immunotherapy effectiveness in the high OS_PAN-index groups. These results suggest that OS patients 
with high OS_PAN-index may be more likely to benefit from immunotherapy. Through GSVA enrichment analysis, we further 
revealed the molecular mechanisms underlying different OS_PAN-index groups. The high OS_PAN-index groups exhibited 
significant enrichment in signaling pathways such as the spliceosome and ubiquitin-mediated protein hydrolysis, which are 
typically associated with tumor immune responses and cell death processes[52]. In contrast, the low OS_PAN-index groups 
were enriched in some metabolic-related pathways. These results not only aid in understanding the biological differences 
between different OS_PAN-index groups but also provide a theoretical basis for developing personalized treatment strategies 
for OS patients based on their OS_PAN-index. 

Finally, utilizing the cellminer and DsigDB databases, we conducted a drug target enrichment analysis for the eight core genes 
closely related to the construction of the OS risk model. The analysis revealed significant positive correlations between the 
expression levels of these core genes and drugs such as pazopanib, chelerythrine, staurosporine, hydroxyurea, and sunitinib. 
Pazopanib, a multi-target tyrosine kinase inhibitor, has demonstrated antitumor activity in various tumors by inhibiting 
tumor angiogenesis and tumor cell proliferation [53]. Chelerythrine, a natural product extracted from plants, exhibits a wide 
range of biological activities, including antitumor effects [54]. Staurosporine, a broad-spectrum protein kinase inhibitor, can 
induce apoptosis and inhibit multiple tumors [55]. Hydroxyurea, a commonly used cytotoxic drug, exerts its therapeutic 
effects by inhibiting DNA synthesis [56]. Sunitinib, another multitarget tyrosine kinase inhibitor, is widely used in the 
treatment of renal cell carcinoma and has shown efficacy in other solid tumors as well [57]. The discovery of these drugs 
provides important references for developing therapeutic strategies for OS. Considering the complexity and heterogeneity 
of OS, a single treatment approach often fails to achieve satisfactory results. Therefore, combining the characteristics of these 
potential drugs, we can consider developing combined treatment regimens in anticipation of achieving better therapeutic 
outcomes. 

When discussing this study, we must acknowledge some existing limitations. Although we have made every effort to analyze 
the immune landscape of OS through bulk RNA sequencing data, the lack of single-cell sequencing data and spatial 
transcriptomic data remains a significant shortcoming. The immune microenvironment is a highly complex and intricate 
microsystem, where cellular differences and interactions are necessary for understanding disease progression and 
developing therapeutic strategies. Therefore, relying solely on macroscopic bulk data for analysis may result in the loss of 
major cellular level information. Furthermore, to more accurately validate the predictive value of our OS_PAN-index model 
in immunotherapy for OS, we require additional immunotherapy-related data with larger sample sizes. Such data would 
provide more direct and compelling evidence to support our model. 

CONCLUSION 

In summary, we conducted a thorough exploration of the OS_ PAN_DEGs related to the PANoptosis process in OS, successfully 
identifying three subgroups with unique prognostic features, mutation patterns, and immune infiltration characteristics. 
Notably, these subgroups also exhibited significant differences in the expression of immune checkpoints, deepening our 
understanding of the biological characteristics of OS. Furthermore, we constructed the OS_PAN index, an innovative indicator 
that is not only closely related to patient survival prognosis but also effectively predicts patient responses to smallmolecule 
targeted drugs and immunotherapy. We anticipate that this model will assist doctors in more accurately identifying patients 
suitable for immunotherapy or targeted therapy, providing new strategies for personalized treatment of OS. This study not 
only opens a new path for precision medicine in OS but may also provide new insights for revealing the PANoptosis 
mechanism in OS. 
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